
Tips
& Tricks

TApplication’s “Missing” Events
Delphi’s help files are infamous for their missing links:
here are a few more! The following events are all de-
fined in FORMS.PAS in the VCL source and all have help
file entries, but none of them are in the events list for
the TApplication entry. Search for:
➣ OnMinimize: called when the app is minimised,
➣ OnRestore: called when the application is being

restored after a minimisation,
➣ OnShowHint: allows you to control various hint win-

dow parameters, like how wide the hint window can
get before word wrapping starts (see the help entry
for TShowHintEvent for more details).

Delphi 2 adds several new methods and properties
and, not surprisingly, the help file entries leave some-
thing to be desired here as well. The following proper-
ties are new to Delphi 2 and have links to their help
topics from the TApplication topic:

property HintShortPause : Integer;
property HintHidePause : Integer;
property UpdateFormatSettings : Boolean;

These methods and property have help entries but the
link from TApplication is broken:

procedure CreateHandle;
procedure Initialize;
property ShowMainForm : Boolean;

These methods have no help file entries and seem to
have been incorrectly declared as public, they should
probably be private methods:

procedure HideHint;
procedure HintMouseMessage(Control: TControl;
 var Message: TMessage);

This method has an incorrect declaration in the Delphi
2 help, it should be:

procedure CreateForm(InstanceClass:
 TComponentClass; var Reference);

I came across the “missing” events when I was trying
to get application minimisation and restoration to work
properly.

If you minimise an application from its main form or
from a non-modal form (ie one displayed by calling the
TForm method Show) everything works as expected. I

procedure TMyModalForm.FormResize(Sender: TObject);
begin
 if WindowState = wsMinimized then
 Application.Minimize;
end;

➤ Listing 1

needed to be able to minimise the application from a
modal form (ie one displayed by calling the TForm
method ShowModal). What happens is that the modal
form gets minimised but the main form stays displayed
and is unable to receive the focus. Now TForm does not
have an OnMinimise event, but it does have an OnResize
event which gets called when a form is minimised. I put
the code in Listing 1 into the event handler on the
modal form, and behold: minimisation works!

Restoring the application doesn’t, though. The solu-
tion I found to this problem is to attach an event
handler to the newly found OnRestore event of the
Application variable (see Listing 2). This code uses the
Screen variable to get a list of the application’s visible
forms and sends each one a message (via the form’s
Perform method) that tells it to restore itself.

Remember that you must attach event handlers to
the Application variable in code, because it is not a
visual component. In your application’s main form, you
should declare and define the event handler and attach
it in the form’s OnCreate event. Listing 2 shows how it’s
done. If you don’t much like this method, there is
source code on the disk for a component (file
APPCOMP.PAS) that you can drop on your applica-
tion’s main form, so you can modify properties and
attach event handlers at design time. The Register
procedure controls where on your component palette
TAppComponent will appear. To have it display on another
tab, change System to the name of your preferred tab.
Giving it a name that does not exist will create a new
tab.

Contributed by Jim Cooper, Sybiz Software,
CompuServe 101641,440

unit MainForm;
interface
type
 TMyMainForm = class(TForm)
 {... Various declarations}
public
 procedure AppOnRestore(Sender : TObject);
end;
implementation
procedure TMyMainForm.AppOnRestore(Sender : TObject);
var i : Integer;
begin
 {Loop through the all the forms in the application}
 for i := 0 to Screen.FormCount - 1 do begin
 if Screen.Forms[i].WindowState = wsMinimized then begin
 Screen.Forms[i].Perform(WM_SYSCOMMAND,SC_RESTORE,0);
 end;
 end;
end;
procedure TMyMainForm.FormCreate(Sender : TObject)
begin
 Application.OnRestore := AppOnRestore;
end;
end.

➤ Listing 2

60 The Delphi Magazine Issue 19

unit MManager;
interface
var HeapSt: THeapStatus;
procedure SetDebugManager(FName: string; AStep: integer);
procedure ClearDebugManager;
procedure WriteDebug(const S: string);
implementation
uses SysUtils;
var
 FileName : string; // the log Filename
 OldMM : TMemoryManager; // the default memory manager
 F: System.Text; // the log file
 OldAllocated : integer; //save last value of allocated memory
 Step : integer; //threshold after which we write to log file
function DebugGetMem(Size: integer): pointer;
begin
 Result:=OldMM.GetMem(Size);
 HeapSt:= GetHeapStatus;
 if (FileName <>’’) and
 ((HeapSt.TotalAllocated - OldAllocated) >= Step) then
 Writeln(F,’GetMem : ’,HeapSt.TotalAllocated);
 OldAllocated := HeapSt.TotalAllocated;
end;
function DebugFreeMem(P: Pointer): integer;
begin
 Result := OldMM.FreeMem(P);
 HeapSt:= GetHeapStatus;
 if (FileName <>’’) and
 ((OldAllocated -HeapSt.TotalAllocated) >= Step) then
 Writeln(F,’FreeMem : ’,HeapSt.TotalAllocated);
 OldAllocated := HeapSt.TotalAllocated;
end;
function DebugReallocMem(P: pointer; Size: integer): Pointer;
begin
 Result := OldMM.ReallocMem(P,Size);
 HeapSt:= GetHeapStatus;
 if (FileName <>’’) and
 ((HeapSt.TotalAllocated - OldAllocated) >= Step) then
 Writeln(F,’ReallocMem : ’,HeapSt.TotalAllocated);

 OldAllocated := HeapSt.TotalAllocated;
end;
const { the new memory manager }
 DebugMM: TMemoryManager = (
 GetMem : DebugGetMem;
 FreeMem : DebugFreeMem;
 ReallocMem : DebugReallocMem);
{ exported routines }
procedure SetDebugManager(FName: string; AStep: integer);
begin
 FileName := FName;
 Step:= AStep;
 OldAllocated := 0;
 if FileName <> ’’ then begin
 AssignFile(F,FileName);
 Rewrite(F);
 end;
 GetMemoryManager(OldMM);
 SetMemoryManager(DebugMM);
 HeapSt:= GetHeapStatus;
 if FileName <> ’’ then
 writeln(F,
 ’Initially allocated Memory : ’,HeapSt.TotalAllocated);
 OldAllocated := HeapSt.TotalAllocated;
end;
procedure ClearDebugManager;
begin
 if FileName <> ’’ then begin
 writeln(F,
 ’Finally allocated Memory : ’,HeapSt.TotalAllocated);
 CloseFile(F);
 end;
 SetMemoryManager(OldMM);
end;
procedure WriteDebug(const S: string);
begin
 if FileName <> ’’ then writeln(F,S);
end;
end.

Heap Checking
I recently developed a unit to check the heap while
debugging in Delphi 2 applications, eventually storing
the results in a log file. The unit (MMANAGER.PAS) is
shown in Listing 3; this and a sample program
(MMTest) are included on this month’s disk.

The aim is achieved by using the Get/SetMemoryMan-
ager routines in the System unit, which allows us to save
and replace the default memory manager. This is done
by defining a constant of type TMemoryManager with three
procedural fields, for Getmem, FreeMem and ReallocMem
respectively. These procedures all do essentially the
same thing: first, they call the saved memory manager
routines, then they save the actual heap status in the
exported variable HeapSt, of type THeapStatus, write to
the log file (if any) a line with the indication of the type
of the action performed and the value of the allocated
memory at this time and finally save this value in the
private variable OldAllocated. Note that the write is
performed only if the memory variation is larger than
a threshold chosen by the user.

The HeapSt variable can be used to monitor the heap
status while debugging. In particular, you can watch its
TotalAllocated field to determine the total heap mem-
ory allocated at any time. Along with the HeapSt vari-
able, the MManager unit exports three procedures:
SetDebugManager, ClearDebugManager and WriteDebug.

SetDebugManager installs the new memory manager. It
takes two parameters: FName, of type string, is the name
of the log file (if an empty string is passed no write is
performed), and Step represents the threshold under
which a memory variation is not written to the log file.
This allows you to reduce the number of lines written

to the file so it doesn’t get too big. After initialising some
private variables, the routine sets the new memory
manager and, if appropriate, rewrites the log file and
writes a line with the initially allocated memory.

ClearDebugManager writes a line with the finally allo-
cated memory and closes the file, then resets the de-
fault memory manager. WriteDebug takes a string as a
parameter. It writes a line to the log file whenever
needed, so it’s easy to identify a particular situation.

You could put the SetDebugManager and ClearDebug-
Manager routines in the initialization and finalization
sections respectively of your application unit(s), or
anywhere else you want, to monitor just a small section
of code, as well as setting the file name and threshold
anywhere you like.

Contributed by Roberto De Marini,
email: rdemari@mbox.vol.it

Combo Box Helpers
To fill combo boxes with items from a database table
at run time I came up with the procedure in Listing 4,
which cycles through all the components on a given
form finding all the TDBComboBox controls. It then fills the
combo boxes which have their Tag property set to zero
with the items in the selected field from our table.

I also needed a routine which would check to see if
all the DBLookupCombo boxes have a correct entry in
them, or if they are left blank. I came up with the
function in Listing 5, which cycles though the compo-
nents array finding all the TDBLookupCombo boxes on a
given form. It then fills a stringlist with the items in the
TDBLookupCombo box Items list, checks the Text property
of the TDBLookupCombo against the stringlist. If a valid
entry was made the function returns true, or it pops up

➤ Listing 3

62 The Delphi Magazine Issue 19

a message and won’t let the user leave that component
until a valid entry is made.

Contributed by Kent Shaw, kentshaw@unitime.com

Data Validation, Required Fields & Null Values
The BeforePost event handler for TTable is the most
popular place to do data validation. However, it does
not catch null value entry errors for fields whose
Required property is True. Typical validation code is:

procedure TForm1.Table1BeforePost(DataSet: TDataSet);

begin

 if DBEdit1.Text = ’’ then begin

 ShowMessage(’Field cannot be left blank’);

 DBEdit1.SetFocus;

 Abort;

 end;

end;

This code first checks to see if the user is trying to post
a null value. If so, it tells them the field in question
cannot be left blank, sets their focus on the offending
edit box, and then aborts the Post procedure. However,

this code does not work for a field whose Required
property is set to True.

Let’s use an example of DBEdit1 connected to the field
ReqField, whose Required property is True. When the
user tries to Post, Delphi returns the EDBEngineError
message: Field value required. Field: ReqField and then
aborts the procedure. The BeforePost event handler is
completely ignored. The EDBEngineError occurs before
the BeforePost event. We cannot catch the null value
before it causes the error.

One solution is to never set a field’s Required prop-
erty to True. If you do this, your BeforePost event han-
dler will work as expected. An exchange in the
CompuServe Delphi forum indicated that this is the
way most programmers deal with this problem. But it
is bad programming to use this end-run around the
problem. If a field requires a non-null value, the
Required property should be True. Good programming
practice puts data checks as deep in the application
hierarchy as possible. It is better to let Delphi check on
the validity of a null value than rely on your own coding.

Why? You might set the Required property to False
to get around the issue, but forget to write the corre-
sponding BeforePost event handler. Your user could
wind up posting null data to an important field, possi-
bly even a key index. On the other hand, if the Required
property is set to True, the worst that can happen is
that Delphi will catch the error and abort the proce-
dure brusquely. At least this way we protect the
integrity of the database.

So if the field’s Required property is True, and that
means the BeforePost event handler will not catch the
null values, where can we catch them? The answer is
to use a try...except block before you Post. Using the
same example, our user tries to Post the record con-
taining the null-value field by pressing ButtonPost. The
code is shown in Listing 6.

The except clause executes if the Post fails due to any
EDatabaseError, including the EDBEngineError, and we
test for the null value. If the null value is what caused
the error the user will see an appropriate message,
have the focus set back to the offending edit box, and
the procedure aborts. You need to place similar code
in every control which triggers a Post, including con-
trols that call an implied Post (eg move to next record
or insert a record).

Contributed by Glen Janken, gjanken@pqsoft.com

function ChkEntries(Sender: TObject):Boolean;
var j,i,k: integer;
 page: string;
begin
 for i := 0 to ComponentCount - 1 do
 if ((Components[i] is TControl) and
 ((Components[i] as TControl).parent =
 notebook.pages.objects[PageIndex])) then
 for j := 0 to ComponentCount - 1 do begin
 if ((Components[j] is TControl) and
 ((Components[j] as TControl).parent =
 components[i])) then begin
 if Components[j] is TDBLookupCombo then begin
 stringlist.Clear;
 stringlist.AddStrings(
 (Components[j] as TDBLookupCombo).items);
 if not stringlist.Find(
 (Components[j] as TDBLookupCombo).text, k)
 then begin
 if ((Components[j] as TDBLookupCombo).text)
 <> ’’ then begin
 MessageDlg(’Invalid, Please Re-Enter’,
 mtInformation, [mbOK], 0);
 (Components[j] as TDBLookupCombo).text :=
 ’’;
 ActiveControl :=
 (Components[j] as TDBLookupCombo);
 Result := false;
 end;
 end else
 Result := true;
 end;
 end;
 end;
end;

procedure ReadTable(Sender: TObject);
var
 j: integer;
 code : String;
 test : Boolean;
begin
 for j := 0 to ComponentCount - 1 do begin
 if Components[j] is TDBComboBox then begin
 if (Components[j] as TDBComboBox).tag = 0 then begin
 Table.Open;
 Table.First;
 while not Table.EOf do begin
 (Components[j] as TDBComboBox).Items.Add(
 Table.FieldByName(’CODE’).AsString);
 Table.next;
 end;
 Table.Close;
 end;
 end;
 end;
end;

➤ Below: Listing 5➤ Above: Listing 4

procedure TForm1.ButtonPostClick(Sender: TObject);
begin
 try
 Table1.Post; {try to Post}
 except
 on EDatabaseError do begin
 { We didn’t get to the BeforePost event handler
 before the error occurred }
 if DBEdit1.Text = ’’ then begin
 ShowMessage(’This Field cannot be left blank’);
 DBEdit1.SetFocus;
 Abort;
 end;
 end;
 end;
end;

➤ Listing 6

March 1997 The Delphi Magazine 63

	TApplication’s “Missing” Events
	Heap Checking
	Combo Box Helpers
	Data Validation, Required Fields & Null Values

